domingo, 7 de outubro de 2018

des-Renormalização e a Eletrodinâmica Quântica categorial Graceli para polarização e auto-energia do elétron. .

energia do elétron no sistema categorial Graceli,


[EPG = d[hc][T/IEEpei [pit]=[pTEMRLD] e[fao][ itd][iicee]tetdvd [pe] cee [caG].]

p it = potenciais de interações e transformações.
Temperatura dividido por isótopos e estados físicos e estados potenciais de energias e isotopos = emissões, fluxos aleatórios de ondas, interações de íons, cargas e energias estruturas, tunelamentos e emaranhamentos, transformações e decaimentos, vibrações e dilatações, potencial eletrostático, condutividades, entropias e entalpias. categorias e agentes de Graceli.

h e = índice quântico e velocidade da luz.

[pTEMRlD] = POTENCIAL TÉRMICO, ELÉTRICO, MAGNÉTICO, RADIOATIVO, luminescência, DINÂMICO]..


EPG = ESTADO POTENCIAL GRACELI.



,[pTEMRlD] [pI] [PF][pIT] [CG]..




,[pTEMRlD] [pI] [PF][pIT] [CG]..


.,[pTEMRlD] [pI] [PF][pIT] [CG]..



 ,,[pTEMRlD] [pI] [PF][pIT] [CG]..


,[pTEMRlD] [pI] [PF][pIT] [CG]..


[pTEMRlD] [pI] [PF][pIT] [CG]..



 e  .[pTEMRlD] [pI] [PF][pIT] [CG]..


[pTEMRlD] [pI] [PF][pIT] [CG]..



[pTEMRlD] [pI] [PF][pIT] [CG]..






O acoplamento da segunda quantização Diraciana" com a Equação de Dirac (ED) (temas tratados em outro verbete desta série) tornou possível estudar o espalhamento da radiação pela matéria, bem como o espalhamento entre elétrons e entre elétrons e pósitrons. Contudo, esse acoplamento apresentava uma série de dificuldades. Por exemplo, quando era estudada a interação de elétrons com o campo eletromagnético, usava-se o método perturbativo, uma vez que esse tipo de interação envolve a constante de estrutura fina(). Desse modo, os primeiros cálculos eram realizados em primeira ordem segundo aquele método, pois se acreditava que os termos de ordem mais alta deveriam ser desprezíveis, em virtude do pequeno valor de a. No entanto, quando tais termos eram considerados na série perturbativa, apareciam certas integrais divergentes, isto é, infinitas.A divergência apontada acima foi encontrada em diversos trabalhos. Com efeito, em 1929 e 1930 (Zeitschrift für Physik 56; 59, p. 1; 168) os físicos, o alemão Werner Karl Heisenberg (1901-1976; PNF, 1932) e o austro-suíço-norte-americano Wolfgang Pauli Junior (1900-1958; PNF, 1945) encontraram divergências quando aplicaram a "segunda quantização Diraciana" ao estudarem a interação entre elétrons, divergências essas que se relacionavam com a auto-energia dos elétrons. A mesma relação foi encontrada, em 1930 (Physical Review 35, p. 461), pelo físico norte-americano Julius Robert Oppenheimer (1904-1967) ao estudar a auto-energia do elétron. Ele percebeu que quando um elétron interage com um campo eletromagnético, há um acréscimo de "energia infinita" do sistema (devido a ser infinita a auto-energia do elétron) e, conseqüentemente, há um deslocamento infinito de todas as linhas espectrais emitidas por um sistema quântico.
Ainda em 1930 (Zeitschrift für Physik 63, p. 54) os físicos, o austríaco Victor Frederick Weisskopf (1908-2002) e o húngaro Eugene Paul Wigner (1902-1995; PNF, 1963) se depararam com uma integral divergente ao aplicarem os trabalhos de Dirac ao estudo da largura natural das linhas espectrais. Todavia, como a teoria perturbativa era insuficiente para tratar esse problema, eles usaram um outro método baseado em uma lei exponencial temporal.
Durante a década de 1930 novas divergências foram encontradas no acoplamento, já referido, entre a "segunda quantização Diraciana" e a ED. [Para um estudo mais detalhado dessas divergências, ver o livro intitulado QED and the Men who Made it: Dyson, Feynman, Schwinger, and Tomonaga (Princeton University Press, 1994), do físico norte-americano Silvan Samuel Schweber (n.1958).] Com efeito, em 1934 (Zeitschrift für Physik 89, p. 27), Weisskopf calculou a auto-energia do elétron (e) estudando a sua interação com o seu próprio campo de radiação, conforme Pauli havia lhe sugerido. Nesse cálculo, encontrou que e divergia quadraticamente. Contudo, o físico norte-americano Wendell Hinkle Furry (1907-1984) ao tomar conhecimento desse cálculo, verificou que havia um erro no mesmo, e escreveu uma carta para Weisskopf indicando-lhe que a divergência era logarítmica e não quadrática. Assim, ainda em 1934 (Zeitschrift für Physik 90, p. 53; 817), Weisskopf apresentou a nova expressão para e:

,
onde e e mo representam, respectivamente, a carga e a massa de repouso do elétron, c é a velocidade da luz no vácuo, h é a constante de Planck, e a é o raio clássico do elétron. É oportuno registrar que a auto-energia clássica do elétron é dada por .
Ao investigar a razão física dessa divergência, Weisskopf demonstrou, inicialmente, em 1936 (Det Köngelige Danske Videnskabernes Selskab Matematisk-Fysiske Meddelanden 14, p. 1) e, posteriormente, em 1939 (Physical Review 56, p. 72), que ela decorre da ação mútua entre o elétron e a flutuação do vácuo, na qual há a produção de pares de elétron-pósitron e, quando o elétron desse par se aproximasse do elétron real, o Princípio da Exclusão de Pauli (formulado em 1925) induz uma mudança na densidade de carga próxima a esse elétron, havendo, conseqüentemente, diminuição de sua auto-energia.
Um outro tipo de divergência logarítmica na "segunda quantização Diraciana" apareceu quando se estudou o espalhamento de elétrons por um campo elétrico estático (potencial Coulombiano), espalhamento esse conhecido como Bremsstrahlung ("reação de frenagem"). Essa divergência surge quando se calcula a secção de choque (s) para esse espalhamento e se considera que não há emissão de fótons de baixa freqüência, conforme se pode ver pela expressão: , onde  refere-se ao comprimento de onda do fóton de baixa freqüência emitido no espalhamento. Portanto, observa-se que quando não há emissão de fótons  Esse tipo de infinito, que ficou conhecido na literatura científica como catástrofe do infravermelho, foi contornado pelos físicos norte-americanos Felix Bloch (1905-1983; PNF, 1953) e Arnold Nordsieck (n.1911), em 1937 (Physical Review 52, p. 54), ao considerarem que fótons (virtuais) de baixa energia acompanham uma carga elétrica (o elétron) quando se move livremente, aliás, como ocorre classicamente.
As divergências logarítmicas vistas até aqui demonstravam que havia uma inconsistência entre a massa teórica ("bare", que significa "nua", em inglês) do elétron (mteo) (desacoplada de seu campo eletromagnético), com a massa deste observada experimentalmente (mexp). Desse modo, a parte do campo eletromagnético que acompanha uma carga elétrica atua sobre esta e produz uma "massa eletromagnética". Essa foi a idéia básica considerada pelo físico holandês Hendrik Anthony Kramers (1894-1952), em 1938 (Nuovo Cimento 15, p. 108), logo considerada como a renormalização da massa, isto é, a massa teórica do elétron era acrescida de uma parcela correspondente à energia de interação entre o elétron e seu próprio campo (auto-energia): .
Um outro exemplo de divergência logarítmica e que levou, também, a um outro processo de renormalização, relaciona-se com o vácuo de elétrons com energia negativa no "mar de Dirac". Vejamos como ocorre essa divergência. Ao ser colocada uma carga nuclear  nesse "mar", pares virtuais de elétron-pósitron são criados devido ao campo Coulombiano de Qo e, portanto, elétrons desse par são atraídos para essa carga, enquanto os pósitrons tendem a se afastar para o infinito. Assim, a carga líquida do núcleo observada para grandes distâncias, porém finitas, é a sua carga original ("nua"), parcialmente diminuída pelas cargas dos elétrons virtuais. Essa situação é análoga ao que acontece com uma carga elétrica q colocada em um meio dielétrico de constante dielétrica , em que ela passa a ter o valor  é a constante dielétrica do vácuo. Dessa maneira, os pares virtuais elétron-pósitron fazem o vácuo comportar-se como um "meio polarizável", com  considerado no cálculo e  tem um valor finito. Registre-se que os primeiros estudos sobre a polarização do vácuo foram realizados, em 1934, por Dirac (Proceedings of the Cambridge Philosophical Society 30, p. 150) e pelo físico alemão Werner Karl Heisenberg (1901-1976; PNF, 1932) (Zeitschrift für Physik 90; 92, p. 209; 692), e, em 1935, em trabalhos distintos, pelos físicos norte-americanos Robert Serber (1909-1997) (Physical Review 48, p. 49) e Edwin Albrecht Uehling (1901-1985) (Physical Review 48, p. 55). Essa "polarização do vácuo" indicava que o valor observado de uma carga elétrica colocada no vácuo é menor do que seu valor "nu". É interessante notar que Serber, em 1936 (Physical Review 49, p. 545), introduziu a expressão renormalização da carga ao voltar a tratar da "polarização do vácuo". A diminuição da carga elétrica do elétron pelo efeito de "polarização do vácuo", em notação atual dada por:

 ,
calculada por Uehling, em 1935, permitiu-lhe mostrar que os estados eletrônicos da "onda s" do átomo de hidrogênio teriam maior probabilidade de penetrar no núcleo desse átomo, e que, portanto, provocaria um abaixamento de 27 MHz no nível de energia daqueles estados. Por essa razão, tal resultado ficou conhecido como efeito Uehling. Aliás, a ED não permitia calcular essa diferença, pois os níveis de energia  por ela determinados, eram degenerados. Note-se que essa degenerescência havia sido estudada, em 1932 (Physical Review 44, p. 1031), pelos físicos norte-americanos Edwin Crawford Kemble (1889-1984) e Richard David Present (1913-1983).
A diferença de energia indicada acima foi medida, em 1937 (Physical Review 51, p. 446) pelo físico norte-americano William Houston (1900-1968) e, em 1938 (Physical Review 54, p. 558), pelo biofísico norte-americano Robley Cook Williams (1908-1995). Ainda em 1938 (Physical Review 54, p. 1113), o físico norte-americano Simon Pasternack (1914-1976) apresentou a primeira explicação teórica para essa diferença, qual seja, devia-se a uma repulsão de curto alcance, entre o elétron e o próton. Em vista disso, esse efeito passou a ser conhecido como efeito Uehling-Pasternack.
Nesse meio tempo, técnicas de microondas foram largamente desenvolvidas durante a Segunda Guerra Mundial (1939-1945). Desse modo, usando tais técnicas, em 1947 (Physical Review 72, p. 241), os físicos norte-americanos Willis Eugene Lamb Junior (n.1913; PNF, 1955) e Robert Curtis Retherford (1912-1981) mostraram, experimentalmente, que a passagem de uma microonda () através de átomos de hidrogênio convertia o estado . Estava, portanto, confirmado o efeito Uehling-Pasternack que, no entanto, passou a ser conhecido com desvio Lamb ("Lamb shift"). É oportuno destacar que, usando essa mesma técnica experimental, os físicos norte-americanos Polykarp Kusch (1911-1993; PNF, 1955) (de origem alemã) e Henry Michael Foley (1917-1982), também em 1947 (Physical Review 72, p. 1256), mediram o momento magnético do elétron e encontraram uma pequena diferença com o valor teórico previsto pela ED.
Quando as experiências citadas acima foram apresentadas na Conferência de Shelder Island, realizada no período 2-4 de junho de 1947, os participantes começaram a discutir a validade dos trabalhos de Dirac (ver detalhes no referido livro do Schweber). Um desses participantes, o físico germano-norte-americano Hans Albrecht Bethe (1906-2005; PNF, 1967), na viagem de trem de volta à Universidade de Cornell, fez um primeiro cálculo do "Lamb shift" usando a técnica matemática empregada (inclusive por ele) para tratar das divergências referidas anteriormente (técnica essa conhecida como "Eletrodinâmica Divergente" ou "Física das Subtrações") e, com isso, obteve o valor de 1040Mc, próximo do valor experimental de 1000Mc. Contudo, apesar desse bom resultado, ele observou que seu cálculo não satisfazia à invariância relativística e, por isso, reuniu os físicos que trabalhavam com ele [dentre os quais fazia parte o norte-americano Richard Philips Feynman (1918-1988; PNF, 1965)], deu um curso para eles objetivando encontrar a invariância desejada. No fim do curso, Feynman foi a Bethe e disse-lhe que já havia resolvido o problema proposto, porém, por uma via completamente nova, por intermédio de certas integrais, hoje conhecidas como Integrais de Caminho ("Path Integrals") de Feynman. O leitor poderá encontrar detalhes desse método desenvolvido por Feynman, em seus dois livros: Quantum Electrodynamics (W. A. Benjamin, 1962) e Quantum Mechanics and Path Integrals (McGraw-Hill, 1965), este escrito com o físico norte-americano Albert Roach Hibbs (1924-2003).
Um cálculo semelhante ao de Bethe foi realizado por Weisskopf e seu aluno, o físico norte-americano James Bruce French (1921-2002), que trabalhavam no Massachusetts Institute of Technology (MIT). De posse desse cálculo, comunicaram-se com Feynman (em Cornell) e com o físico norte-americano Julian Seymour Schwinger (1918-1994; PNF, 1965) (em Harvard) que haviam calculado, em 1948, e independentemente, o "Lamb shift". Contudo, enquanto Feynman (Physical Review 74, p. 939; 1430) usou seu novo formalismo, Schwinger (Physical Review 74, p. 1439) usou a representação da interação covariante da ED. Registre-se que esse tipo de representação havia sido desenvolvido pelo físico japonês Sin-itiro Tomonaga (1906-1979; PNF, 1965), em 1943 (Rikon-Iho 22, p. 545), ao compensar os infinitos relativos à massa e à carga elétrica do elétron que apareciam na "Física de Subtrações", introduzindo termos infinitos opostos na Hamiltoniana relativista que havia considerado na ED.
Como o valor obtido por Feynman e Schwinger era diferente do encontrado por Weisskopf e French, estes retardaram a publicação de seu trabalho. E, durante cerca de sete meses, trabalharam na esperança de encontrar o erro que supostamente haviam praticado. Entrementes, o próprio Lamb e o físico norte-americano Norman Myles Kroll (n.1922) fizeram um novo cálculo para o "Lamb shift" e encontraram um valor bem próximo do obtido por Weisskopf e French. Quando Feynman tomou conhecimento desse cálculo, telefonou para Weisskopf e disse-lhe: Você está certo e estou errado. Desculpas por haver retardado a publicação do trabalho de vocês. Assim, em 1949, o volume 75 da Physical Review publicou os artigos de Lamb e Kroll (p. 388) e de Weisskopf e French (p. 1240). Ainda em 1949, no volume 76 dessa mesma revista, Feynman publicou um trabalho (p. 769) no qual reproduziu o mesmo resultado de Weisskopf e French, e aproveitou a oportunidade para reiterar (agora, publicamente), o pedido de desculpas que já fizera a esses físicos. É oportuno registrar que, também em 1949 (Physical Review 75, p. 486; 1736), o físico inglês Freeman John Dyson (n.1923) demonstrou que as "regras de Feynman", hoje conhecidas como diagramas de Feynman, desenvolvidas em 1948, eram conseqüência direta da formulação invariante relativística da Teoria Quântica de Campos, desenvolvida por Tomonaga, em 1943, e por Schwinger, em 1948. A partir daí, começou o estudo do que hoje se conhece como Eletrodinâmica Quântica ("Quantum Electrodynamics" - QED).



Modelo Atômico proposto pelo físico dinamarquês Niels Henrik David Bohr (1885-1962; PNF, 1922), em 1913 e em três artigos (Philosophical Magazine 26, p. 1; 476; 857), é baseado em dois postulados:

                   Primeiro – A energia (W) de cada elétron em uma configuração estacionária é dada por , onde  é a freqüência de revolução (angular) do elétron, é um número inteiro, e h é a constante de Planck;
                      
                    Segundo – A passagem dos sistemas entre diferentes estacionários é seguida pela emissão de uma radiação homogênea, para a qual a relação entre a sua freqüência () e a quantidade de energia emitida () é dada por:  = h .

                   De posse desses dois postulados (vide verbete nesta série) e apresentados em seu primeiro artigo (julho de 1913), Bohr então passou a deduzir a fórmula empírica de Balmer-Rydberg-Schuster (1885/1890/1896) [, sendo  e c a velocidade da luz no vácuo], com a constante de Rydberg R, usada pelos espectroscopistas, escrita em termos da massa de repouso m e da carga elétrica e do elétron, de h e da carga E do núcleo (número atômico) Rutherfordiano (). Para a energia W e o raio (a) das órbitas dos elétrons, Bohr obteve, respectivamente, os seguintes valores:  e  . Registre-se que todas essas expressões estão no sistema CGS. 
                   Usando as expressões acima para o átomo de hidrogênio (E = e), Bohr observou que havia um bom acordo entre o seu modelo e alguns resultados experimentais conhecidos. Assim, usando o valor de e medido pelo físico norte-americano Robert Andrews Millikan (1868-1953; PNF, 1923), em 1912 (Transactions of the American Electrochemical Society 21, p. 185), o valor de e/m medido pelo físico alemão Alfred Heinrich Bucherer (1863-1927), também em 1912 (Annalen der Physik 37, p. 597), e o valor de h proposto pelo físico alemão Max Karl Ernest Planck (1858-1947; PNF, 1918), em 1900, Bohr obteve os seguintes resultados. 1) raio da primeira órbita () – o raio de Bohr ; 2) , sendo o valor experimental usado pelos espectroscopistas dado por: ; logo depois, usando o valor experimental de h medido, em 1913 (Annalen der Physik 40, p. 611), pelos físicos alemães Emil Gabriel Warburg (1846-1931), G. Leitnäuser, E. Hupka e C. Müller, Bohr obteve o seguinte valor: ; 3) energia da primeira órbita - .
                   Além do mais, Bohr observou que se na expressão que deduzira para a freqüência se fizesse , ela reproduziria a série de Balmer (1885); para , teríamos a série de Paschen (1908). Afirmou mais ainda que: Se , obteremos séries situadas, respectivamente, no extremos ultravioleta e no extremo infravermelho, ainda não observadas mas cuja existência deve esperar-se. É oportuno registrar que tais séries foram encontradas, respectivamente: série de Lyman (1914), série de Brackett (1922) e série de Pfund (1924). Além da previsão dessas novas séries espectrais, Bohr resolveu ainda a polêmica que havia sobre a série de Pickering (1896)- Fowler (1912) ao mostrar, por intermédio da expressão que deduzira para  (ver  expressão acima), que tal série era devido ao hélio ionizado (He+), uma vez que a mesma poderia ser obtida fazendo E = 2 e  nessa expressão (vide verbete nesta série).
                   É interessante notar que, ainda no primeiro artigo de sua trilogia, além das demonstrações indicadas acima, Bohr também demonstrou que, se o momento angular (M) de um elétron em movimento circular (de raio a) em torno do núcleo de um átomo, tivesse o valor dado por , com , a energia desse elétron seria estacionária, isto é, o elétron estaria em um estado quântico de energia bem definido. Aliás, registre-se que a “quantização do momento angular” já havia sido sugerida pelo físico inglês John William Nicholson (1881-1955), em 1912 (Monthly Notices of the Royal Astronomical Society 72, pgs. 49; 139; 677; 693; 729), em seus trabalhos nos quais desenvolveu seu modelo atômico “tipo saturniano”, isto é: um caroço central carregado positivamente rodeado de anéis eletrônicos.
                   Uma das primeiras confirmações experimentais do modelo atômico de Bohr foi conseguida por intermédio da experiência realizada pelos físicos alemães James Franck (1882-1964; PNF, 1925) e Gustav Ludwig Hertz (1887-1975; PNF, 1925) [sobrinho do famoso físico alemão Heinrich Rudolf Hertz (1857-1894), que havia obtido, em 1887, as hoje famosas “ondas Hertzianas” – microondas]. Vejamos como isso aconteceu. Desde 1911, esses físicos realizavam experiências sobre descargas elétricas nos gases, procurando uma relação entre a Teoria Quântica de Planck e o potencial de ionização dos gases utilizados. Esse potencial representava a diferença de potencial (V) que devia ser aplicada aos raios catódicos (elétrons) com o objetivo de ionizar, por colisão, os átomos dos gases considerados. Até 1913, eles haviam conseguido medir os potenciais de ionização de diversos gases [hidrogênio (H), hélio (He), neon (Ne), oxigênio (O) etc.], usando aquela técnica. No entanto, em 1914 (Verhandlungen der Deustschen Physikalische Gesellschaft 16, pgs. 457; 512), eles encontraram um resultado surpreendente, comunicado por Hertz na reunião daSociedade Alemã de Física realizada no dia 24 de abril de 1914. Tal resultado deveu-se ao seguinte.
                   A experiência que Franck e Hertz realizaram relacionava-se com o estudo da colisão de elétrons com vapor de mercúrio (Hg) à pressão de cerca de 1 mm de Hg. Por intermédio de um amperímetro, eles mediram a corrente elétrica do anodo [folha cilíndrica de platina (Pt)] em função do potencial acelerador aplicado ao catodo (fio de platina incandescente). Com isso, eles estudaram a velocidade (v) dos elétrons (de massa m e carga e) antes e depois da colisão com os átomos de Hg, por intermédio da expressão: . Observaram, então, que a corrente elétrica aumentava com o potencial (V) até quando este atingia o valor aproximado de 4,9 V (Volts), caindo a corrente rapidamente após aquele valor do potencial. No entanto, à medida que o potencial crescia novamente, a corrente voltava também a crescer até quando o potencial atingisse o valor aproximado do dobro do valor anterior (9,8 V), quando de novo a corrente caía de maneira brusca. Esse comportamento corrente versus potencial repetia-se sempre que o potencial fosse um múltiplo em torno de 4,9 V, indicando que o elétron poderia sofrer mais de uma colisão inelástica com o vapor de Hg. Esses valores críticos do potencial eram acompanhados pela emissão de luz de comprimento de onda de 2.536 Ǻ. Franck e Hertz encontraram um comportamento similar, embora menos pronunciado, quando substituíram o vapor de Hg por He, sendo o potencial crítico deste em torno de 21 V.
                   Para interpretar tais resultados, Franck e Hertz utilizaram as idéias apresentadas pelo físico alemão Johannes Stark (1874-1957; PNF, 1919) sobre a origem das séries espectrais. Em 1908 (Physikalische Zeitschrift 9, p. 85), Stark propôs um modelo segundo o qual as séries espectrais se relacionavam com o processo de ionização de átomos e moléculas, e que sua freqüência () era ligada ao potencial de ionização (V) através da expressão: . Portanto, para Franck e Hertz, logo que a energia cinética do elétron () atingia a energia potencial crítica  (eV), uma parte dela era usada na ionização e a outra era emitida como luz de freqüência . Com esse procedimento, eles chegaram a obter o valor de , em bom acordo com os valores experimentais até então conhecidos.
                   Apesar de o físico germano-norte-americano Albert Einstein (1879-1955; PNF, 1921), em maio de 1914, em carta que escreveu a seu amigo o físico austríaco Paul Ehrenfest (1880-1933), admitir que a experiência de Franck-Hertz confirmava o modelo atômico Bohriano, os autores dessa experiência continuavam a acreditar que os potenciais (V)críticos observados referiam-se a potenciais de ionização. Em 1915 (Philosophical Magazine 30, p. 394), Bohr interpretou essa experiência com o seu modelo atômico. Assim, para Bohr, a energia potencial (eV) crítica correspondia à diferença de energia entre os estados estacionários do átomo neutro, e a emissão da luz observada naquela experiência devia-se ao retorno do elétron orbital em estados estacionários mais energéticos, os quais ele os atingia devido à colisão com os raios catódicos, a estados menos energéticos. Apesar dessa explicação, novas experiências realizadas por Franck e Hertz, em 1916, ainda foram por eles interpretadas da mesma maneira como a de 1914. Somente em 1919 (Physikalische Zeitschrift 20, p. 132), Franck e Hertz aceitaram a explicação de Bohr.
                   Vejamos, agora, os Princípios da Correspondência e da Complementariedade formulados por Bohr. A primeira idéia sobre o Princípio da Correspondência foi apresentada por Bohr em seu primeiro artigo da trilogia de 1913. Com efeito, ao examinar a expressão que ele havia deduzido para a freqüência  [], ele escreveu [vide B. L. van der Waerden, Sources of Quantum Mechanics (Dover, 1968)]: A freqüência da radiação emitida durante a passagem de um sistema entre estados estacionários sucessivos coincidirá com a freqüência de revolução do elétron na região de baixas vibrações. No entanto, somente em 1918 (Köngelige Danske Videnskabernes Selskab Skrifter 4, p. 1), ele usou novamente o “argumento da correspondência”, segundo o qual o comportamento quântico dos átomos se funde com o comportamento clássico no limite dos números quânticos muito grandes. Note-se que Bohr usou esse “argumento” para demonstrar a regra de seleção entre as transições eletrônicas orbitais (em notação atual): , onde m é o número quântico magnético, e representa a projeção do número quântico orbital () na direção do campo magnético externo. Aliás, essa mesma regra havia sido obtida independentemente pelo físico polonês Adalbert Rubinowicz (1889-1974), também em 1918 (Physikalische Zeitschrift 19, p. 441; 465). Contudo, o nome Princípio da Correspondência (“Korrespondenzprinzip”) só foi assumido por Bohr, em 1920 (Zeitschrift für Physik 2, p. 423), em trabalho no qual estudou as séries espectrais dos elementos. Mais tarde, em 1923 (Proceedings of the Physics Society of London 35, p. 275; Physikalische Zeitschrift 13, p. 117), ele voltou a usar esse princípio, em sua discussão sobre os princípios fundamentais da Teoria Quântica.   
                   O Princípio da Complementaridade foi apresentado por Bohr, pela primeira vez, no Congresso Internacional de Física, realizado em Como, na Itália, em 16 de setembro de 1927 (Atti del Congresso Internazionale dei Fisici), por ocasião das comemorações do centenário de morte do grande físico italiano, Alessandro Giuseppe Volta (1745-1827). Entre 1923 e 1924, o físico francês, o Príncipe Louis Victor Pierre Raymond de Broglie (1892-1987; PNF, 1929) formulou sua hipótese da “dualidade onda-partícula do elétron” (vide verbete nesta série), hipótese essa que era motivo de muita discussão entre os físicos, devido ao caráter dúbio que ela aparentava representar. Para contornar essa dubiedade, Bohr apresentou, naquele Congresso, o seguinte princípio: Os modelos corpuscular e ondulatório são complementares; se uma medida prova o caráter ondulatório da radiação eletromagnética ou da matéria, então é impossível provar o caráter corpuscular na mesma medida, e vice-versa.
                   Note-se que a proposta de Bohr sobre a complementaridade e apresentada em Como, em 1927, conforme registramos acima, foi publicada em 1928 (Nature 121, pgs. 78; 580; Naturwissenschaften 16, p. 245). Logo depois, em 1929 (Naturwissenschaften 17, p. 483, Bohr voltou a tratar desse mesmo tema. Mais tarde, em 1946 (Mathematik Tidsskrift B, p. 163), 1948 (Dialectica 2, p. 312; Proceedings of the 8th Solvay Conference, p. 9) e 1949 [In: P. Schilpp (Editor), Albert Einstein: Philosopher-Scientist (Tudor)], Bohr apresentou uma discussão epistemológica sobre esse princípio, bem como sua possível aplicação em outras ciências, principalmente a Biologia.   
                   É oportuno registrar que o leitor poderá encontrar mais detalhes sobre os temas discutidos neste verbete, assim como sobre a vida de Bohr, nos seguintes textos: Maria Cristina Batoni Abdalla, Bohr: O Arquiteto do Átomo (Odysseus, 2002); Niels Bohr, Física Atômica e Conhecimento Humano (Contraponto, 1995); Abraham Pais, Niels Bohr´s Times, in Physics, Philosophy, and Polity (Clarendon Press, 1991); e Nadia Robotti, Il Primi Modelli dell´Atomo: Dall´Elletrone all´Atomo di Bohr (Loescher, 1978).